Генератор фигур лихтенберга своими руками

Технология производства ЧПУ выжигателя своими руками

Какими характеристиками должен обладать ЧПУ выжигатель, чем отличаются изделия и есть ли возможность сконструировать их самостоятельно? Специалисты предупреждают, прежде чем оправляться в магазин за прибором или пытаться собрать его, необходимо понять механизм действия ЧПУ станка и продумать, какая программа для управления будет оптимальной.

В последнее время пирография развивается и набирает особую востребованность, люди заказывают у профессионалов выжженные по дереву картины и портреты в качестве сувениров и подарков. Поэтому у опытных мастеров и любителей подобного занятия появилась идея открыть собственный небольшой бизнес, основанный на выжигании изображений.

Лазерный выжигатель

Лазерный ЧПУ выжигатель относится к последним разработкам.

Лазерный выжигатель с ЧПУ

Главной отличительной чертой прибора является возможность точно прорезать и вырисовывать границы, высокий результат достигается за счет того, что станок рисует по древесине точками. Преимущества лазерного станка:

  • Благодаря высокой точности станком удобно выжигать мелкие надписи и таблички – изображение будет четким с яркими контурами.
  • Лазерный выжигатель подходит для обработки дерева, кожи, бумаги и пленки.
  • Станок исправно работает в помещении с низкой или высокой температурой, сквозняки и перепады не влияют на функционирование.

Есть основные недостатки.

Поскольку станок рисует точками, вывести лазером полутона и тени не удастся. Добиться объемного изображения не получится даже у опытного художника с оптимально настроенной программой.

Лазерный ЧПУ станок работает медленно. Специалисты уверяют, чтобы нарисовать портрет размером 25×25 сантиметров, мастеру придется потратить около 13 часов. Необходимо учитывать, картина будет светлой, возможно, потребуется дополнительная прорисовка.

При увеличении фотографии перед переносом на полотно, выжигатель прорисует ее пикселями. Внешне изображение будет напоминать мозаику.

Мастера утверждают, лазерный выжигатель по дереву излучает слишком яркое свечение, со временем такая яркость негативно скажется на зрении.

Выжигатель с нихромовой нитью

Приспособление оснащено другим механизмом воздействия, придающим выжженным изображениям существенный объем, рисунки кажутся натуральными и насыщенными. Изображение наносится на древесину нихромовой нитью, яркость цвета зависит от температуры прогревания нити и времени воздействия на поверхность.

Во время прорисовки теней проволочное жало нужно быстро провести над поверхностью, не задерживая на дереве. Но если рисунок требует ярких и толстых линий, проволоку можно оставить на 3–4 секунды.

К достоинствам станка специалисты относят:

  • Насыщенность рисунка регулируется на аппарате специальной кнопкой.
  • Функция помогает придать изображению любую интенсивность в зависимости от пожеланий клиента.
  • Выжигать картины легко по дереву и коже.
  • Чтобы прорисовать картину размером 25×25 сантиметров, у опытного специалиста уйдет 3 часа.
  • Рисунок не будет пиксельным при вытягивании и увеличении фотографии.
  • Во время выжигания аппарат не излучает вредный свет.

Как правильно подключать источник тока

Существует множество разных способов подключения трансформатора. Рассмотрим один из самых оптимальных и безопасных.

В электрической схеме обязательно должен присутствовать предохранитель, а также термозащита, поскольку трансформатор очень сильно греется в процессе работы.

Поэтому один провод от разъема питания надо подключить к предохранителю, второй — к термозащите (можно снять со старой СВЧ печи).

Сам разъем питания можно использовать от блока питания компьютера (и провод с вилкой для подключения к сети 220В тоже от компьютера).

С предохранителя и термозащиты провода идут на кнопку включения/выключения с подсветкой. От кнопки провода идут на соединительную колодку, а от нее — на первичную обмотку.

Поскольку предохранитель и термозащита установлены до кнопки, то в случае перегорания предохранителя или срабатывания термозащиты, она светиться не будет, из чего будет понятно, что напряжение на трансформатор не подается.

Клеммный выход со вторичной обмотки выводим на колодку. Второй конец обмотки заведен на корпус, поэтому нужно прикрепить клемму к корпусу с помощью болта и гайки, а ее конец также вывести на колодку.

Из колодки провода, идущие от вторичной обмотки, подключаются к выходной розетке. В эту розетку будет включаться вилка с «крокодильчиками» на конце.

Различные защитные диоды, а также родной предохранитель трансформатора от СВЧ печи, расположенный в цепи вторичной обмотки, обязательно нужно убрать.

Часто используют более простую схему подключения. В данном случае провод с вилкой подключается напрямую к первичной обмотке, а провода с «крокодильчиками» подключаются ко вторичной обмотке: то есть один провод надо будет подключить к выходу вторичной обмотки (он всего один), а второй — к металлическому корпусу трансформатора (место прилегания клеммы необходимо будет зачистить от лака).

Что это такое?

Это творчество предполагает использование электрического тока и высокого напряжения, потому тем, кто не имеет опыта в работе с электротехникой, а также не знает мер безопасности, не стоит с головой уходить в новое увлечение. Вы должны быть уверены в своих силах, потому что этот вид пирографии требует определенного опыта и хорошего знания школьного курса физики.

5 частых вопросов о выжигании электричеством:

Можно ли выжигать сварочным аппаратом?

Нет, ничего у вас не получится, и если, как отмечалось выше, вы учили физику в школе, то такая идея даже не придет вам в голову.

Что потребуется для выжигания?

Нужен трансформатор. Большинство мастеров предложит использовать трансформатор от микроволновой печи. Он и будет главным оборудованием.

Кто такой Лихтенберг и чем интересны его фигуры?

Фигуры Лихтенберга – так называют картины распределения искровых каналов, которые образуются на поверхности твердого диэлектрика при искровом разряде скользящего характера. В принципе, с помощью таких фигур можно определить силу разряда молнии и полярность, а можно превратить их в творческий акт. Лихтенберг подарил миру интересные визуализации растекания тока при разряде.

Что нужно для первого опыта подобного выжигания?

Для первых проб достаточно микроволновки, пищевой соды, газированного напитка, деревянной разделочной доски.

Можно ли привлекать к такому выжиганию детей?

Нет, это опасно даже для взрослого неподготовленного человека. Картинки, полученные выжиганием электрическим током, завораживают, но сделать их сможет только подготовленный, обученный правилам безопасности взрослый человек.

Жизнь

Георг Кристоф Лихтенберг родился в Обер-Рамштадте недалеко от Дармштадта , ландграфство Гессен-Дармштадт , был самым младшим из 17 детей. Его отец, Иоганн Конрад Лихтенберг, был пастором, восходящим по служебной лестнице церковной иерархии, который в конечном итоге стал суперинтендантом Дармштадта . Что необычно для священнослужителя в те времена, он, кажется, обладал изрядным количеством научных знаний. Лихтенберг получил образование в доме своих родителей до 10 лет, когда он поступил в Латинскую школу в Дармштадте. Его интеллект стал очевиден в очень раннем возрасте. Он хотел изучать математику, но его семья не могла позволить себе платить за уроки. В 1762 году его мать обратилась к Людвигу VIII, ландграфу Гессен-Дармштадтского , который предоставил достаточно средств. В 1763 году Лихтенберг поступил в Геттингенский университет .

В 1769 году он стал экстраординарным профессором по физике , а шесть лет спустя ординарным профессором . Он занимал этот пост до самой смерти. Приглашенный своими учениками, он дважды посетил Англию , с Пасхи до начала лета 1770 года и с августа 1774 года до Рождества 1775 года, где его тепло приняли Георг III и королева Шарлотта . Он провел короля через королевскую обсерваторию в Ричмонде , после чего король предложил ему стать профессором философии. Он также встретился с участниками путешествий Кука . Великобритания произвела на него впечатление, и впоследствии он стал известным англофилом.

Один из первых ученых, которые представили эксперименты с приборами в своих лекциях, Лихтенберг был популярной и уважаемой фигурой в современных европейских интеллектуальных кругах. Он был одним из первых, кто представил Германии громоотвод Бенджамина Франклина , установив такие устройства в своем доме и садовых сараях. Он поддерживал отношения с большинством великих деятелей той эпохи, включая Гете и Канта . В 1784 году Алессандро Вольта посетил Геттинген специально, чтобы увидеть его и его эксперименты. Математик Карл Фридрих Гаусс присутствовал на его лекциях. В 1793 году он был избран членом Королевского общества .

Лихтенберг был склонен к откладыванию на потом . Ему не удалось запустить первый водородный шар . Он всегда мечтал написать роман в стиле « Том Джонс» Филдинга , но никогда не заканчивал больше нескольких страниц.

Лихтенберг в детстве стал горбуном из-за уродства позвоночника , который упал. Это сделало его необычно коротким даже по меркам 18 века. Со временем эта деформация усугубилась, что в конечном итоге повлияло на его дыхание.

Личная жизнь

В 1777 году он встретил Марию Стечард, которой тогда было 13 лет, которая после 1780 года постоянно жила с профессором. Она умерла в 1782 году. Их отношения были воплощены в романе Герта Хофманна , который его сын Майкл Хофманн перевел на английский язык под названием Лихтенберг и маленькая цветочница .

В 1783 году, в следующем году, Лихтенберг познакомился с Маргарет Келлнер (1768–1848). Он женился на ней в 1789 году, чтобы дать ей пенсию , так как он думал, что скоро умрет. У них было шестеро детей, и она пережила его на 49 лет.

В 1799 году Лихтенберг умер в Геттингене после непродолжительной болезни в возрасте 56 лет.

Памятник Лихтенбергу на рынке в Геттингене

Плененная молния: производство уникальной сувенирной продукции

Берт Хикман, объединившись со своими коллегами, создал группу «Spark Whisperers». Целью работы этой группы стало независимое исследованием феномена молнии и методик искусственного получения ее разряда. Изначально задумкой автора было воспроизведение фигур Лихтенберга в лабораторных условиях. «Сумасшедший ученый», как сам себя называет Берт Хикман, поступил абсолютно верно, когда сделал ставку на акрил, выбирая материал для своих экспериментов. Акриловое стекло продемонстрировало свою удивительную способность «укрощать молнию».

Эксперимент по захвату электрического разряда был проведен успешно. Быть может, о том, какая красота из этого получится, не подозревал и сам автор проекта. Кусочки акрила с «плененной молнией» внутри могли бы так и остаться образцами для лабораторных исследований, если бы не художественное чутье Берта Хикмана. Ученый понял, что его творения представляют ценность не только для науки, но и для искусства. Сегодня одно из направлений деятельности художника — производство сувенирной продукции из акрила, пленившего молнию.

Варьируя режимы работы, изменяя направление и интенсивность разряда, ученый научился создавать из фигур Лихтенберга самые разнообразные 2D и 3D узоры. Для формирования сложных рисунков художник создает участки пониженного или повышенного сопротивления с помощью специальных покрытий, таким способом указывая путь или создавая преграды для перемещения электрического разряда. Искусственная молния движется по заданной траектории – так происходит формирование сложных электрических изображений. На электрических картинах появляются деревья, кусты, бабочки, звезды, снежинки, цветы, символические изображения. В некоторых скульптурах электрические разряды располагаются упорядоченно, в других – абсолютно хаотично. В том и другом случае «молния в акриле» производит одинаково ошеломляющее впечатление.

Завершающим штрихом всего этого великолепия служит светодиодная подсветка. Чтобы «плененная молния» выглядела максимально ярко и реалистично, скульптура подсвечивается различными цветами. Каждая «веточка» электрического узора работает как маленькое зеркало, отражая и рассеивая световое излучение. Особенно эффектно смотрятся такие изделия в темном помещении: прозрачная основа сливается с темным фоном и становится практически незаметной, а узор горит ярким сиянием. Кажется, будто время остановилось и электрический разряд застыл в воздухе.

Все скульптуры художника – уникальны, как все явления природы. Невозможно два раза повторить один и тот же узор – каждый раз электрическая картина внутри акрила будет иметь неожиданные очертания. Природное явление, которое можно в естественной среде наблюдать лишь считанные секунды, остается внутри акрила навеки. Любоваться такой величественной красотой можно очень долго – всматриваться в каждый изгиб витиеватого узора и удивляться тому, насколько идеальными могут быть созданные природой контуры.

Дата создания : 24 ДЕК 20151 Автор «Акрилшик»

Как поймать молнию. Искусство фигур Лихтенберга

Оригинал взят у digitall_angell в Как поймать молнию. Искусство фигур Лихтенберга В дополнение ко вчерашнему посту Генная инженерия материи: как магнитным полем сжимают металлВероятно, вы слышали выражение «поймать джина (молнию) в бутылку». Однако 67-летний американский художник Берт Хикман превращает эту метафору в реальность, в чём можно убедиться, взглянув на его работы в серии «Захваченные молнии». Чтобы получить такие картины, Берт использует особую технику и куски акрила, через который он пропускает электрический ток с напряжением в миллионы вольт. Распространяясь в акриле, ток прожигает дорожки, которые образуют узоры похожие на ветви, снежинки или что-то более сложное.

Источник

А вот так можно «захватывать» молнию в 3Д:Illuminated Lichtenberg Figure

Делается это вот так:

Канал автора: https://www.youtube.com/user/BertHickman

Сайт автора: http://www.capturedlightning.com/ Тот же процесс на дереве:Фигуры Лихтенберга (Lichtenberg figures)

Фигуры Лихтенберга (иногда называются «лихтенберговы фигуры») — картины распределения искровых каналов, образующиеся на поверхности твёрдого диэлектрика при скользящем искровом разряде. Впервые наблюдались немецким учёным Г. К. Лихтенбергом в 1777.Объёмные фигуры Лихтенберга в акриловом кубе.В искровых каналах сильного разряда возникают высокие давления и температуры, которые деформируют поверхность диэлектрика, запечатлевая на ней фигуры Лихтенберга. В слабых разрядах фигуры Лихтенберга соответствуют избирательной поляризации диэлектрика, и их можно сделать видимыми, посыпая поверхность диэлектрика специальным порошком либо проявляя фотопластинку, подложенную во время разряда под слой диэлектрика.

Фигуры Лихтенберга вблизи анода и катода резко различаются по внешнему виду, поэтому по ним можно установить, от какого из этих электродов развивались искровые каналы (т. н. полярность искрового разряда). В частности, фигуры Лихтенберга могут использоваться для определения полярности и силы разряда молнии. Вики

Все в природе фрактально и подобно, все подчиняется одинаковым законам и эти законы открыты для нашего осторожного исследования и взаимодействия. Нервная система человека работает не микроскопических ЭМ импульсах и связана с окружающим миром (который работает на тех же импульсах) по принципу антенны (не только как приемник, но и передатчик)

Наши мысли влияют на ДНК, как и наши слова, а также на выбор той ветки реальности, в которой мы проходим свой опыт

Нервная система человека работает не микроскопических ЭМ импульсах и связана с окружающим миром (который работает на тех же импульсах) по принципу антенны (не только как приемник, но и передатчик). Наши мысли влияют на ДНК, как и наши слова, а также на выбор той ветки реальности, в которой мы проходим свой опыт.

  • Мы можем научиться договариваться со всеми силами, стихиями, духами природы и даже самим временем, если будем делать это во благо развития, а не разрушения.
  • PS: Кстати, а вы знали, что молнии в природе могут исходить ОТ Земли, поднимаясь ВВЕРХ?

Amazing Upward LightningПо теме: Звук как основа Мироздания и как он формирует нашу Реальность

ТЕМАТИЧЕСКИЕ РАЗДЕЛЫ:ЛУЧШИЕ ПОСТЫ БЛОГА |  РЕГРЕССИЯ В ПРОШЛЫЕ ЖИЗНИ |  РЕИНКАРНАЦИЯ | КАРМА | ДЕТИ ЗВЕЗД |  ХРАНИТЕЛИ | СОЗНАНИЕ |  АВТОРСКИЕ СТАТЬИ | ТВОРЕЦ И ТВОРЕНИЕ |  ПОДКЛЮЧКИ И ПРЕДИКТОР |  ИСТОРИЯ |  ХРОНО | FAQ |  ПОСТЫ О ЧИСТКАХ | АВАТАРЫ БОГОВ МАТРИЦА  |  МНОГОМЕРНАЯ КАРТИНА ПРОИСХОДЯЩЕГОМЕДИЦИНАДУХОВНЫЕ ПРАКТИКИ  ХРОНОЛОГИЯ ЦИВИЛИЗАЦИИ ИЛИ ЕЁ ПОЛНОЕ ОТСУТСТВИЕ | ПИТАНИЕ  ВИДЕОДНКГРАДОСТРОЕНИЕ  ЖИВОТНЫЕ |   ОТЗЫВЫ О СЕАНСАХ |КНИГА ПАМЯТИ ЗВЕЗДНОГО ПЛЕМЕНИ | ARTICLES IN ENGLISH | AUF DEUTSCH  |  О ПРОЕКТЕ | КУРСЫ ГИПНОЗА  | МЕТАИССКРА. Краткое описание методики

Лазерный ЧПУ выжигатель:

Преимущества

Как сделать пилораму из бензопилы своими руками: способы, материалы, технология

1. Более высокая точность границ.

Это связано с тем, что лазерный ЧПУ станок рисует по дереву точками. Это его важная особенность, из которой вытекают и свои недостатки. Писать офисные таблички, бейджики, рисовать векторные объекты, тексты и изображения с очень четкими границами, нарисованные линиями лучше лазерным ЧПУ.

нихром и лазер

2. Выжигает не только по дереву.

Выжигает также по деревянным поверхностям и коже, но еще может вырезать пленку типа ORACAL. Те лазеры, которые могут вырезать пластик, дерево, пенопласт – это более мощные и дорогие соответсвенно

Вырезание букв на пленке Oracal

3. Низкие требования к температуре помещения.

Недостатки лазерного ЧПУ выжигателя:

1. Нанесение изображения точками

. Самый главный недостаток – лазерным ЧПУ выжигателем сложно сделать полутона для изображения. То есть, точка черная либо есть, либо ее нет. Любой художник знает, что эффект объема изображения достигается тенями на поверхности лица. Тени создают объектам объем, делают его “живым”. Во многом, восприятие и узнавание лиц мозгом человека устроено так, что узнавание человека происходит во многом из-за теней, показывающих объем. В случае с лазерным ЧПУ тень можно получить только уменьшением густоты расположения черных точек.

2. Низкая скорость выжигания.

Изображение выжигается со скоростью 10 точек в секунду. Так, картину размером 20*20 см мы выжигали 10 часов. При этом, не скажу, что изображение было сильно темным. Говорить о каком-то серийном выполнении заказов тут уже не приходится – либо придется ставить несколько ЧПУ, либо довольствоваться небольшим количеством заказов.

Выжигание портретов лазером. Скрин-шот с экрана. Выжигание лазером формата А4 занимает порядка 9 часов

3. Рисование пикселями.

По ходу работы выявились еще несколько неприятных особенностей Лазерного ЧПУ: при редактировании изображения и увеличении фотографии ЧПУ рисует на дереве “пикселями”. То есть, изображения перестает быть равномерным, и скорее напоминает мозаику, выполненную из квадратиков.

При небольшом увеличении изображение может “пикселить”

4. Яркое свечение от лазера как при сварке .

Сразу вспомнил старого знакомого, который работает с профессиональным полиграфическим оборудованием (станок изготавливает лазером матрицы для офсетной печати) – у того зрение то ли “минус 6”, то ли “минус 7”. Способ защититься от яркого света на самом деле есть – это специализированные очки. Но их не всегда удается подобрать правильно – каждому лазеру с разной длиной волны лазера соответствуют разные очки, защищающие именно от этого диапазона светового излучения. Если у вас есть дети и вы хотите поставить лазер дома, то это, на наш субъективный взгляд, просто немыслимо!

Яркое свечение от лазера может сильно посадить зрение

5. Не всякое дерево подходит.

Те, кто выжигают на дереве, знают, что по дереву перед выжиганием можно пройтись содовым раствором. Но при работе лазер просто сжигает остатки соды на поверхности. Чтобы этого не происходило, приходится очень тщательно промывать заготовку.

Не всякая фанера подойдет для лазерного ЧПУ

Работа схемы выжигателя по дереву и её настройка:

Технология нанесения жидких обоев на стену своими руками

Сделать такую схему под силу даже начинающему радиолюбителю или домашнему мастеру, необходимы примитивные навыки умения паять и настраивать схемы (есле все элементы подобрано адекватно и схема собрана правильно, она сразу заработает как надо). Однако следует отдельно выделить несколько тонкостей:

1) Обращаю ваше внимание что регулировка выходного напряжения трансформатора ТР1 (а значит и температуры накаливания нихромовой проволоки) осуществляется по первичной обмотке, пусть вас не смущает эта инновация! Так как, за основу взята схема регулятора мощности для паяльника, вам следует понять, что для любого нагревательного элемента (в данном случае куска нихромовой проволоки) не важна форма и качество синусоиды. 2) Однако, обращаю ваше внимание на то что вторичная обмотка трансформатора должна выдерживать потребляемый нихромовой проволокой ток (его вы легко можете посчитать по закону Ома). 2) Однако, обращаю ваше внимание на то что вторичная обмотка трансформатора должна выдерживать потребляемый нихромовой проволокой ток (его вы легко можете посчитать по закону Ома)

3) Так же следует использовать толстые провода, ведущие к рукоятке выжигателя по дереву, и хорошо изолированные, не соблюдение правил техники электробезопасности при сборке или пользовании устройства, может привести к травмам!!!

2) Однако, обращаю ваше внимание на то что вторичная обмотка трансформатора должна выдерживать потребляемый нихромовой проволокой ток (его вы легко можете посчитать по закону Ома). 3) Так же следует использовать толстые провода, ведущие к рукоятке выжигателя по дереву, и хорошо изолированные, не соблюдение правил техники электробезопасности при сборке или пользовании устройства, может привести к травмам!!!. 3) Так же следует использовать толстые провода, ведущие к рукоятке выжигателя по дереву, и хорошо изолированные, не соблюдение правил техники электробезопасности при сборке или пользовании устройства, может привести к травмам!!!

3) Так же следует использовать толстые провода, ведущие к рукоятке выжигателя по дереву, и хорошо изолированные, не соблюдение правил техники электробезопасности при сборке или пользовании устройства, может привести к травмам!!!

Механизм действия УВТ

Более двадцати лет экстракорпоральная литотрипсия ударной звуковой волной, успешно использовалась в лечении мочекаменной болезни. Так же, как энергия ударной звуковой волны вызывает разрушение камней почек, воздействие на поврежденные ткани ускоряет репаративные процессы, вызывая реваскуляризацию и запуская другие механизмы регенерации.

Существует несколько теорий механизма болеутоляющего действия ударной звуковой волны при лечении хронических болевых синдромов:

  • изменение биохимии в тканях с увеличением выработки веществ ингибиторов болевых медиаторов;
  • разрушение клеточных мембран клеток- рецепторов боли, генерирующих болевые импульсы;
  • стимуляция рецепторов боли, что вызывает выработку высокочастотных импульсов. Ретроцессия этих болевых импульсов, которая полностью зависит от внешней стимуляции, таким образом, ингибируется (в соответствии с теорией «воротного контроля»);
  • стимуляция выделения эндорфинов, которые, в свою очередь приводят к уменьшению чувствительности к боли в тканях.

Все эти теории в настоящее время нуждаются в подтверждении в клинических исследованиях. На сегодняшний день эти теории пока не подтверждены. Возможно, реально происходит симбиоз механизмов патогенеза. Тем не менее, отмечается до 80% эффективности применения ударной звуковой волны.

Эффекты УВТ на ткани:

  • Увеличение обмена веществ в тканях- мишенях
  • Разрушение депозитов кальция и дальнейшая резорбция (вокруг внутри сухожилий)
  • Уменьшение активности воспалительных процессов
  • Уменьшение болезненности
  • Увеличение прочности тканей

Возможности клеток регенерировать после воздействия ударной звуковой волны зависит от мощности генерируемой волны и степени поглощения ее тканями. При достаточно большой энергии волны происходит разрушение ядер клеток тканей. В остеотерапии для того, чтобы добиться остеонеогенетического эффекта, ударная волна должна быть достаточной мощной для воздействия на костные структуры.

В нашем Центре лечение проводится на аппарате Swiss DolorClast, который генерирует ударную волну пневматическим методом, распространяющуюся в теле пациента на глубину до 35 мм.

Природные явления

Молния — это естественная трехмерная фигура Лихтенберга.

Фигуры Лихтенберга — это папоротниковые узоры, которые могут появиться на коже жертв удара молнии и исчезают через 24 часа.

Удар молнии также может создать большую фигуру Лихтенберга в траве вокруг пораженной точки. Иногда их можно найти на полях для гольфа или на травянистых лугах. Разветвляющиеся отложения минералов « фульгурит » в форме корня также могут образовываться, когда песок и почва превращаются в стекловидные трубки под воздействием сильного тепла потока.

Электрическое древообразование часто происходит в высоковольтном оборудовании до того, как оно вызовет полную поломку. Следование этим цифрам Лихтенберга в изоляции во время расследования повреждения изоляции после аварии может быть полезно при поиске причины пробоя. Опытный инженер-электротехник может видеть по направлению и форме деревьев и их ветвей, где находилась основная причина поломки, и, возможно, найти первопричину. Таким образом можно исследовать вышедшие из строя трансформаторы, высоковольтные кабели, вводы и другое оборудование. Изоляция раскатывается (в случае бумажной изоляции) или нарезается тонкими ломтиками (в случае твердых изоляционных материалов). Затем результаты зарисовываются или фотографируются, чтобы зафиксировать процесс поломки.

Процесс выжигания молний

Нам потребуется деревянная заготовка — дощечка любого размера и электролит (содовый раствор).

С помощью кисточки или кухонной губки наносим подготовленный электролит на поверхность древесины. Смачивать нужно всю плоскость доски — рисунок получится гораздо интереснее.

По краям заготовки вбиваем два гвоздя. Некоторые мастера гвозди не используют — цепляют зажимы-прищепки прямо на заготовку.

Но для лучшего эффекта лучше все-таки забить пару гвоздей. Ну или можно саморезы закрутить.

Далее включаем трансформатор, и наслаждаемся красочным зрелищем. Прямо на глазах рождаются узоры в виде хаотичных разрядов молнии.

Ссылки [ править ]

  1. Веб-сайт конструктивного права
  2. De Nova Methodo Naturam Ac Motum Fluidi Electrici Investigandi (Göttinger Нови Commentarii, Геттинген, 1777). Английский перевод латинского названия: «О новом методе исследования природы и движения электрической жидкости».
  3. Такахаши, Yuzo (1979). «Двести лет личностей Лихтенберга». Журнал электростатики . Elsevier BV. 6 (1): 1–13. DOI : . ISSN   .
  4. Герц, Генрих Рудольф (1900). .
  5. Рисс, Питер (1846). . Annalen der Physik und Chemie (на немецком языке). Вайли. 145 (9): 1–44. Bibcode . DOI . ISSN .
  6. Merrill, FH; Фон Хиппель, А. (1939). «Атомфизическая интерпретация фигур Лихтенберга и их применение к изучению газоразрядных явлений». Журнал прикладной физики . Издательство AIP. 10 (12): 873–887. Bibcode . DOI . ISSN .
  7. Кокс, JH; Легг, JW (1925). «Клайдонограф и его применение для исследования скачков напряжения». Труды Американского института инженеров-электриков . Институт инженеров по электротехнике и радиоэлектронике (IEEE). XLIV : 857–871. DOI . ISSN . S2CID .
  8. Niemeyer, L .; Pietronero, L .; Wiesmann, HJ (1984-03-19). «Фрактальная размерность диэлектрического пробоя». Письма с физическим обзором . Американское физическое общество (APS). 52 (12): 1033–1036. Bibcode . DOI . ISSN .
  9. «Фрактальная природа молнии: исследование фрактальной взаимосвязи структуры молнии с землей» Брайана Клея Грэма-Джонса, диссертация, представленная на факультет математики при частичном выполнении требований для степени магистра наук , Университет штата Флорида, Колледж искусств и наук, 2006 г.
  10. ↑ Bailey, Caitlin (2016). Tintinalli, Judith E .; Стапчинский, Дж. Стефан; Ма, О. Джон; Йили, Дональд М .; и другие. (ред.). Электротравмы и молнии . Неотложная медицина Тинтиналли: комплексное учебное пособие (8-е изд.). Нью-Йорк, штат Нью-Йорк: Макгроу-Хилл.
  11. «Молния и фигуры Лихтенберга» Майкла Черингтона, Шерил Олсон и Филипа Р. Ярнелла, Травма: Международный журнал помощи раненым, Том 34, Выпуск 5, май 2003 г., страницы 367-371
  12. Гросс, Бернхард (1958). «Эффекты облучения в оргстекле». Журнал науки о полимерах . Вайли. 27 (115): 135–143. Bibcode . DOI . ISSN .
  13. Гросс, Бернхард; Набло, Сэм В. (1967). «Высокие потенциалы в электронно-облученных диэлектриках». Журнал прикладной физики . Издательство AIP. 38 (5): 2272–2275. Bibcode . DOI . ISSN .
  14. Гарднер, Дональд G .; Туси, Мохаммад Т.А. (1967). «Радиационно-индуцированные изменения показателя преломления, плотности и диэлектрической проницаемости полиметилметакрилата». Журнал прикладной науки о полимерах . Вайли. 11 (7): 1065–1078. DOI . ISSN .
  15. — через www.youtube.com.
  16. — через woodturner.org.

Как увеличить проводимость древесины?

Чтобы выжигание закончилось успешно и у вас получилась интересная картина, нужно подумать о том, как повысить проходимость электротока по дереву. Чтобы ее увеличить, достаточно нанести на верхний слой полотна воду. Но сама вода не будет хорошим проводников. Поэтому в нее добавляют либо соду пищевую, либо поваренную соль. Отличного результата можно добиться, используя следующий концентрат: на стакан воды 1 ст. ложка соды. Когда раствор будет готов, им нужно пропитать поверхность.

ВАЖНО! От количества пропитки зависит результат выжигания. Чем больше жидкости – тем ярче и четче молнии

После того, как дерево пропитаете, отложите его ненадолго в сторону, чтобы подготовить трансформатор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector